Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Braz. j. med. biol. res ; 50(11): e6485, 2017. tab
Article in English | LILACS | ID: biblio-888949

ABSTRACT

Osteoarthritis (OA) is the main cause of disability worldwide, due to progressive articular cartilage loss and degeneration. According to recent research, OA is more than just a degenerative disease due to some metabolic components associated to its pathogenesis. However, no biomarker has been identified to detect this disease at early stages or to track its development. Metabolomics is an emerging field and has the potential to detect many metabolites in a single spectrum using high resolution nuclear magnetic resonance (NMR) techniques or mass spectrometry (MS). NMR is a reproducible and reliable non-destructive analytical method. On the other hand, MS has a lower detection limit and is more destructive, but it is more sensitive. NMR and MS are useful for biological fluids, such as urine, blood plasma, serum, or synovial fluid, and have been used for metabolic profiling in dogs, mice, sheep, and humans. Thus, many metabolites have been listed as possibly associated to OA pathogenesis. The goal of this review is to provide an overview of the studies in animal models and humans, regarding the use of metabolomics as a tool for early osteoarthritis diagnosis. The concept of osteoarthritis as a metabolic disease and the importance of detecting a biomarker for its early diagnosis are highlighted. Then, some studies in plasma and synovial tissues are shown, and finally the application of metabolomics in the evaluation of synovial fluid is described.


Subject(s)
Humans , Animals , Metabolomics/trends , Osteoarthritis/diagnosis , Osteoarthritis/metabolism , Biomarkers/metabolism , Early Diagnosis , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Metabolomics/methods , Osteoarthritis/physiopathology , Synovial Fluid/metabolism
2.
Braz. j. med. biol. res ; 36(8): 993-1002, Aug. 2003. ilus, graf
Article in English | LILACS | ID: lil-340795

ABSTRACT

Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions


Subject(s)
Animals , Axons , Chondroitin Sulfates , Heparitin Sulfate , Mesencephalon , Neurons , Astrocytes , Cell Division , Cells, Cultured , Mesencephalon , Neuroglia
3.
Braz. j. med. biol. res ; 34(5): 611-620, May 2001. ilus
Article in English | LILACS | ID: lil-285874

ABSTRACT

The development of the nervous system is guided by a balanced action between intrinsic factors represented by the genetic program and epigenetic factors characterized by cell-cell interactions which neural cells might perform throughout nervous system morphogenesis. Highly relevant among them are neuron-glia interactions. Several soluble factors secreted by either glial or neuronal cells have been implicated in the mutual influence these cells exert on each other. In this review, we will focus our attention on recent advances in the understanding of the role of glial and neuronal trophic factors in nervous system development. We will argue that the functional architecture of the brain depends on an intimate neuron-glia partnership


Subject(s)
Humans , Animals , Cell Communication/physiology , Neuroglia/physiology , Neurons/physiology , Astrocytes/cytology , Astrocytes/physiology , Neuroglia/cytology , Neurons/cytology , Neurotransmitter Agents/physiology , Oligodendroglia/physiology , Schwann Cells/physiology
4.
Braz. j. med. biol. res ; 34(2): 251-258, Feb. 2001.
Article in English | LILACS | ID: lil-281604

ABSTRACT

Astroglial cells derived from lateral and medial midbrain sectors differ in their abilities to support neuritic growth of midbrain neurons in cocultures. These different properties of the two types of cells may be related to the composition of their extracellular matrix. We have studied the synthesis and secretion of sulfated glycosaminoglycans (GAGs) by the two cell types under control conditions and ß-D-xyloside-stimulated conditions, that stimulate the ability to synthesize and release GAGs. We have confirmed that both cell types synthesize and secrete heparan sulfate and chondroitin sulfate. Only slight differences were observed between the proportions of the two GAGs produced by the two types of cells after a 24-h labeling period. However, a marked difference was observed between the GAGs produced by the astroglial cells derived from lateral and medial midbrain sectors. The medial cells, which contain derivatives of the tectal and tegmental midline radial glia, synthesized and secreted ~2.3 times more chondroitin sulfate than lateral cells. The synthesis of heparan sulfate was only slightly modified by the addition of ß-D-xyloside. Overall, these results indicate that astroglial cells derived from the two midbrain sectors have marked differences in their capacity to synthesize chondroitin sulfate. Under in vivo conditions or a long period of in vitro culture, they may produce extracellular matrix at concentrations which may differentially affect neuritic growth


Subject(s)
Animals , Mice , Astrocytes/metabolism , Glycosaminoglycans/biosynthesis , Mesencephalon/cytology , Sulfates/metabolism , Sulfuric Acid Esters , Astrocytes/metabolism , Cell Culture Techniques , Chondroitin Sulfates/biosynthesis , Chondroitin Sulfates/metabolism , Electrophoresis, Agar Gel , Glycosaminoglycans/metabolism , Heparitin Sulfate/biosynthesis , Heparitin Sulfate/metabolism
5.
Braz. j. med. biol. res ; 32(5): 611-8, May 1999.
Article in English | LILACS | ID: lil-233479

ABSTRACT

As a result of recent investigations, the cytoskeleton can be viewed as a cytoplasmic system of interconnected filaments with three major integrative levels: self-assembling macromolecules, filamentous polymers, e.g., microtubules, intermediate filaments and actin filaments, and supramolecular structures formed by bundles of these filaments or networks resulting from cross-bridges between these major cytoskeletal polymers. The organization of this biological structure appears to be sensitive to fine spatially and temporally dependent regulatory signals. In differentiating neurons, regulation of cytoskeleton organization is particularly relevant, and the microtubule-associated protein (MAP) tau appears to play roles in the extension of large neuritic processes and axons as well as in the stabilization of microtubular polymers along these processes. Within this context, tau is directly involved in defining neuronal polarity as well as in the generation of neuronal growth cones. There is increasing evidence that elements of the extracellular matrix contribute to the control of cytoskeleton organization in differentiating neurons, and that these regulations could be mediated by changes in MAP activity. In this brief review, we discuss the possible roles of tau in mediating the effects of extracellular matrix components on the internal cytoskeletal arrays and its organization in growing neurons


Subject(s)
Extracellular Matrix/physiology , Microtubule-Associated Proteins/physiology , Neurons/physiology , tau Proteins/physiology , Cytoskeletal Proteins , Gene Expression Regulation, Developmental , Morphogenesis , Nerve Growth Factors , Neuroglia
6.
Braz. j. med. biol. res ; 32(5): 619-31, May 1999.
Article in English | LILACS | ID: lil-233480

ABSTRACT

Intermediate filament (IF) proteins constitute an extremely large multigene family of developmentally and tissue-regulated cytoskeleton proteins abundant in most vertebrate cell types. Astrocyte precursors of the CNS usually express vimentin as the major IF. Astrocyte maturation is followed by a switch between vimentin and glial fibrillary acidic protein (GFAP) expression, with the latter being recognized as an astrocyte maturation marker. Levels of GFAP are regulated under developmental and pathological conditions. Upregulation of GFAP expression is one of the main characteristics of the astrocytic reaction commonly observed after CNS lesion. In this way, studies on GFAP regulation have been shown to be useful to understand not only brain physiology but also neurological disease. Modulators of GFAP expression include several hormones such as thyroid hormone, glucocorticoids and several growth factors such as FGF, CNTF and TGFß, among others. Studies of the GFAP gene have already identified several putative growth factor binding domains in its promoter region. Data obtained from transgenic and knockout mice have provided new insights into IF protein functions. This review highlights the most recent studies on the regulation of IF function by growth factors and hormones


Subject(s)
Astrocytes , Glial Fibrillary Acidic Protein/metabolism , Growth Substances , Bone Morphogenetic Proteins , Cell Differentiation , Central Nervous System , Fibroblast Growth Factors , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha , Vimentin
7.
Braz. j. med. biol. res ; 29(9): 1179-87, Sept. 1996.
Article in English | LILACS | ID: lil-186125

ABSTRACT

The central nervous system (CNS) midline plays an important role in growth and guidance of axons. At the midline, a multiplicity of cell types establish boundaries that control the navigation of crossed and uncrossed axonal fibers. The extracellular matrix (ECM) molecules of the resident neuroepithelial or committed neuronal of glial cells could be involved in the control of axon growth and axon guidance. This review reports the recent advances in the study of the structure and functional role of the ECM at the midline locus of the CNS. In vivo and in vitro approaches are considered to provide new clues in the understanding of processes involved in the cellular decisions of the CNS midline.


Subject(s)
Humans , Collagen/metabolism , Extracellular Matrix/metabolism , Fibronectins/metabolism , In Vitro Techniques , Laminin/metabolism , Mesencephalon/cytology , Neurites/ultrastructure , Neuroglia/metabolism , Tenascin/metabolism , Central Nervous System/cytology , Mesencephalon/growth & development
8.
Braz. j. med. biol. res ; 25(11): 1127-30, 1992. ilus
Article in English | LILACS | ID: lil-134609

ABSTRACT

A Brazilian case of Creutzfeldt-Jakob disease in a hypopituitary patient who had received cadaver-derived human pituitary growth hormone between 1968 and 1977 is reported. The clinical diagnosis was confirmed during his lifetime by the demonstration of two abnormal 30-kDa proteins in the cerebrospinal fluid by two-dimensional gel electrophoresis. These proteins, characteristic of Creutzfeldt-Jakob disease, present isoelectric points of 5.1 and 5.2. Furthermore, both proteins migrate as doublets, each one displaying a molecular weight variant of about 29-kDa. This is one of 16 cases of the disease associated to therapy with cadaver-derived human growth hormone and one of the few examples among such cases of confirmation of the clinical diagnosis by biochemical characterization of abnormal proteins in the cerebrospinal fluid


Subject(s)
Humans , Male , Cerebrospinal Fluid Proteins/drug effects , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Creutzfeldt-Jakob Syndrome/drug therapy , Growth Hormone/therapeutic use , Adult , Brazil , Chronic Disease , Cerebrospinal Fluid Proteins/cerebrospinal fluid , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/etiology , Electrophoresis, Gel, Two-Dimensional , Hypopituitarism/complications , Hypopituitarism/cerebrospinal fluid , Hypopituitarism/drug therapy , Molecular Weight
9.
Braz. j. med. biol. res ; 22(7): 817-20, 1989. ilus
Article in English | LILACS | ID: lil-83197

ABSTRACT

Tau proteins are involved in polymerization of tubulin into microtubules. They comprise a heterogeneous group of proteins that can be resolved by two-dimensional gel electrophoresis using a non-equilibrium pH gradient in the first dimension. Developmental studies show that mouse brain Tau proteins are more heterogeneous in 15-day old mice than in newborn pups or adults. Tau phosphorylation is also more heterogeneous at this stage


Subject(s)
Mice , Animals , Cerebrum/metabolism , Microtubules/metabolism , Phosphorylation , Microtubule-Associated Proteins/metabolism , Autoradiography , Electrophoresis, Gel, Two-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL